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SUMMARY

The flow about a body of revolution at high supersonic airspeeds is
investigated analytically with the aid of the generalized shock-expansion
method. With the assumption that flow at the vertex is conical, approxi-
mate solutions for the flow field are obtained for values of the hyper-
sonic similarity psrameter (i.e., the ratio of the free-stream Mach number
to the fineness ratio of the body) greater than about 1 and for angles of
attack less than the semivertex angle of the body. Surface streamlines
are approximated by meridian lines and the flow field is calculated
in meridian planes. Simple explicit expressions are obtained for the
surface Mach numbers and pressures in the special case of slender bodies.

In the case of lifting cones, algebraic solutions defining the entire
flow field are obtained when the hypersonic similarity parameter has a
value of about 1.4 or greater.

Surface pressures and shock-wave shapes were obtained experimentally
at Mach numbers from 3.00 to 5.0~ and angles of attack up to 15° for two
ogives having fineness ratios of 3 and 5 and for two cones having the
same vertex angles ds the ogives. The predictions of the methods of this
paper are found to be in good agreement with experiment at values of the
hypersonic similarity parameter in the neighborhood of 1 and greater,
when the ratio of angle of attack to semivertex angle is about one-half,
or less. For increasing values of this ratio, agreement deteriorates but
may still be considered fair for values slightly less than 1.

INTRODUCTION

.—

d
It was suggested in reference 1 that flow over the surface of a non-

lifting body of revolution could be treated as two-dimensional in type
downstream of the vertex when the hypersonic similarity psmmeter (i.e.,

f the ratio of the free-@resm Mach number to the fineness ratio of the body)
was greater than about 1. This point was substantiated by comparing predic-
tions of two-dimensional (Prsndtl-Meyer) expansion theory tith those of
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characteristics theory for the Mach numbers and pressures on the surfaces h
of ogives. The two-dimensional theory has the advantage, of course, of
being relatively simple by comparison to chgmacteristics theory and is
about as simple as the recently proposed hypersonic small disturbance v.
theory of Van Dyke (ref. 2).

It was also suggested in reference 1 that the two-dimensional.approaa .
might be extended to the calculation of flow at the surface of slightly
inclined bodies of revolution. This thought led to a study (ref. 3) of
three-dimensional hypersonic flows which revealed that such flows may
often appear locally two-dimensional. It was concluded that at hypersonic
speeds the entire flow field about a three-dimensional body may, under
certain conditions, be calculated with a shock-expansion method similar
to that employed for calculating two-dimensional flow about airfoils
(ref. 4). The conditions of when and how this generalized shock-exFansion
method can be applied to calculate three-dimensional flows were determined
in reference 3.

The Principal.objectiveof the present paper is to apply the general-
ized shock-expansion method to obtain expressions yielding the Mach number
and pressure distributions throughout the entire flow field about an
inclined body of revolution. In order to apply the shock-expansion method,
it is necessary to know initial conditions at the vertex of a lifting
body. These conditions can be taken to be the same as those about a cone
tangent to the body at the vertex. One objective of this paper, then, is
to develop a conical flow theory for lifting cones over the range of free-
stream Mach numbers and apex angles not treated in the M.1.T. tables
(ref. 5).
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NOTATION
i

local speed of sound, ft/sec

normal force
normal-force coefficient,

q#(d2/4)

.

specific heat at constant pressure;-ft-lb/slug %

specific heat at constant volume, ft-lb/slug %

maximum diameter of body of revolution, in.

entropy, ft-lb/slug %
u

total Fressure, lb/sq in.
—

hypersonic similarity Farameter, M. $ v

characteristic body length (measured from vertex to most for-
ward point of maximum diameter), in.
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Mach number (ratio of local

static pressure, lb/sq in.

dynamic pressure, lb/sq in.

velocity to local speed of sound)

P - Po
pressure coefficient, ~

gas constant, ft-lb/slug %

velocity component parallel to ray passing through vertex of
cone, ft/sec

velocity component normal to u in a meridian plane, ft/sec

velocity component normal to a meridian plane, ft/sec

resultant velocity, JU2 + V2 + #’, ft/sec

maxhnum velocity obtainable by expanding to zero temperature,
ft/sec

distance along axis of body measured from vertex, in.

distance normal to axis of body, in.

angle of attack, radians unless otherwise specified
.

Mach angle, arc s~ * j radians unless otherwise specified

ratio of specific heats, >
v *

angle of flow inclination in meridian plane measured with respect
to body axis, radians unless otherwise specified

angle of inclination of axis of conicsl shock with respect to
free-stream direction, radians unless otherwise specified

angle of inclination of axis of conical shock with respect to
axis of body, radians unless otherwise specified

mass density, slugs/cu ft

angle OP merdian plane with respect to plane of symmetry,
radians unless otherwise specified (see fig. 1)

angle between axis of cczneand ray passing throua vertex of cone,
radians unless otherwise specified
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Subscripts “

free-stream conditions

conditions at different points in the flow field

conditions on the

conditions at the

conditions on the

surface of a cone

externsl surface of the vertical layer
—

surface at the vertex of a body
-.

conditions immediately behind the shock wave at the vertex of a
body

THEORY

This investigation is concerned with the theoretical and experimmtal
characteristics of the flow about bodies of revolution traveling at high
supersonic airspeeds and at small angles of attack. It is assumed through-
out the analysis that the disturbed flow is e~erywhere supersonic and,
hence, the body has a pointed nose or vertex. With these restrictions

.-
—

on the free-stream Mach number, angle of attack, and body shape, the bow
shock wave will lie close to the surface of the body. The procedure for

a

determining flow conditions in such flow fields is analogous to that
employed in reference 1 for the case of axially symnetric flow fields; P
namely, the flow field is studied in two parts - flow at the vertex and
flow downstream of the vertex. The combined”results of these two phases
of the investigation will then be applied to the determination of the
whole flow field and, in particular, to the determination of flow prop-
erties on the body surface and the re’sulting”shock-wave shape.

Flow at the Vertex of a Lifting Body

It follows from the assumptions basic to this analysis that the flow
at the vertex will be the same as for a cone tangent to the body at the
vertex and immersed in the same free stresm. All derivatives with respect
to radial distance vanish for these conditions, and the equations of motion
and continuity in spherical polar coordinates become (a schematic diagram v
of the polar coordinate system is shown in fig. 1)
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au+ w au ~2.@=o——- (la)
v au sin w bq

p+ ~ av+lap+uv—. - w2cot M = o (lb)
au sin u aQ p au

~aw+ w aw+ 1 * +Uw+wcotu=o (lC)
au ‘—sinw~ psinw*

and

ap av b &=o
2wsinw+vsinu —+p sin~—+wcosw+w - +P (2)

au b %%

respectively. Since the total energy in the flow is constant, the fol-
lowing relations must be satisfied:

7
(
lb

)(

p ap

)

,uau:v&+waw—. —-— —=-
7 -l P&p P=* ** &

The entropy at any point in the flow may be expressed as

(3)

(4)

Equations (1), (2), and (3) together with the relation

●

may
the

J

be combined (by eliminating the pressure and density terms) to obtain
general equation of motion
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~= & W2 aw ~ av ?X=O (5)
au—- ——-—”-mausin u av sin w ap

which, when combined with the appropriate shock-wave relations, defines
the flow about a circular cone immersed at an angle of attack in a super-
sonic stream.

w

it

.-
—

Conditions at the shock wave.- In order to obtain algebraic solutions
for flow at the vertex, it is necessary to make some simplifying assump-
tions regarding the flow field. To this end, the conical shock is assumed
to be circular but inclined at an angle e to the free stream.1 Then,
the.angular difference between the cone axis and the shock axis is —

Now, the shock-wave angle measured from the cone axis, US, is referred
to the free-stream direction by MS + a cos (p. The shock-wave angle
measured from the shock axis, (%) QaE;n:: is referred to the free-stream
direction by (us)qa + q + e cos q. > d

ws+acosrp= h’wp=o + V + E Cos q P

and by virtue of expression (6) the resulting equation for the shock
angle may be witten2 ,.

% = (%hpo + T(I - Cos Q) (7)

where (w8)q+ is the shock angle in the plane of symmetry on the windward

lExperimental results indicate (as will be shown later) that for small
angles of attack the conical shock does, in fact, remain nesrly circulsr.
Other investigators (notably Stone, see, e.g., ref. 6) have made a similar
assumption. It should be noted, however, that the additional assumption
commonly employed, namely, that the conical-shock apex angle is the same

‘*

as in the nonyaw case, is not made here.

21t should be noted that all angles are measured with respect to the f
body aXiS. The procedure of developing all pertinent expressions in the
body coordinate system will be employed throu@out the analysis.
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. side of the cone (see fig. 1). Similarly, the meridian angle
with respect to the shock axis, may be related to the meridian
measured with respect to the cone SXiS, W

$

sin q~ = sin (p(l- q cot LJJCos (p)

and

Cos

The shape of the conical
ponents at the shock may

-

ii If the
sxound
in any

7

rps,measured
angle q,

‘?s= cosq + q cotu sin%p

shock having been specified, the velocity com-
be obtained from the oblique-shock-wave relations

us = Vocos[us +ct(cos qI+ q cot ussin%)l (8)

Ws =Vo~ sincp(l - q cot uscos cp) (9)

Vs 7 -1 1- (~y . (..7
(lo)

7=-7+1V0v
~ sin[ws + CZ(COSQ + q cot ussin%p)]
v

shock angles in the plane
the entire shock could be
plane could be determined

of symmetry were known, flow conditions
determined since the shock-wave angle
from eauation (7). In order to determine

these shock-wave angles, it is necessar~ to determine the crossflow
component of velocity, w, throughout the flow field. Attention is there-
fore turned in this direction.

Determination of crossfhw component of velocity.- Recalling the
basic assumption to this analysis, namely, that flow fields of the type
under consideration are characterized by the bow shock lying close to
the surface of the body (i.e., w - 8 << 1), it is reasoned that the
variation of w with u should be small and it is assumed that

w = w~((.1.))w~((p) (11)

w’

Now Wz(q) is givenby equation (9). There remains, then, the determina-
tion of Wl(w) in any meridian plane. To this end, consider equation (la).

R Differentiating this equation twice with respect to g and once with
respect to u yields, in the plane of symmetry,
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Now, if we let

equation (12) becomes, upon integration witi resPect to wz

(12)

(13)

(14)

.-

Consider now the integral term in the above equation. At the surface of
the body (v= O)

F(o) =0

Since it seems reasonable that
the surface and the shock wave,
attain its matium value at the
(9), (10), and (13))

F(u) will be a monotonic function between
it is assumed that this function will .
shock and may be written (from eqs. (8),

B

2(7-1)

[

(Voe)Moe
F(w)6 = Vocos(us +U)(E - 2aq cot us) +

y+l Mosin(u6 + a)—1 -

[“Y-ll+ 1

1

(e - Z!cLqcot Us)vocos(ws + a)
7+1 7

;1% 2sin2(us + a)

Now, according to the above
~sin(ws + ~) is a minimum.
waves, the maximum value of
Mosin(u6 + a.)equal to 1 in
there results

expression, F(w) is a maximum when
Since h@in(u6 + a) ~ 1 for attached shock
F(w) cam be determined by setting 7
the above expression. Hence, since M& - 1,

?-

2(7 - 1)
F(m) <— VOE - ~ Vocos(ws + a)(E - !2cqcot %!)

Y+l
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Hence,.

1
and it follows that

Therefore the integral term in

F(m)l <e

f%
edw= C(US - UC)

)C

equation (14) is, at most, second order
and can be neglected in this analysis. Equation (14) now can be written

()

aw aw sin us
—=—
* *ssinw

Hence,
-.

sin U’
WI(M) =~

and it appears that expression (11) is
variation of w with w is, in fact,
expression with equations (9) and (11)

*
sin us

w ‘vOe sin u sin cp(l

a logical assmnptton since the
small. Combination of the above
yields, then,

- q cot U*COS (p)

defining the crossflow component of the velocity anywhere
field relative to the cone axis.

(15)

in the flow

Having determined an expression for w throu@out the flow field,
one can now obtain a solution to the flow in the plane of symmetry in a
manner analogous to that presented in reference 1 for the case of axially
symmetric conical flows. Since the calculation of the flow In this plane
requires simultaneous solutions of the conical flow equations and the
oblique shock-wave relations, the procedure is somewhat involved and,
hence, is given in Appendix A. After (U6) ~ and e

%
have been determined

from Appendix A, conditions around the ent e shock front can be deter-
mined from equations (6) throu@ (10). Determination of flow conditions
mound the cone surface will now be considered.

Flow conditions on the surface.- It has been shown by Ferri in refer-
ence T that to the first order in a the entropy remains constant in a

i meridian plane (having the value that exists at the shock in that plane)
until a vertical layer is reached at the surface of the body across which
a variation of entropy occurs. Since the entropy on the surface is
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constant, it must have the same value that exists in the plane q = O.
Now the thickness of the vortlcal layer being of the order of az, the
pressure remains constant through the layer to the first order of a
and the component of velocity normal to the surface can be considered
zero on the external side of the layer. Hence, across this vertical
layer

Pc = Pe

Vc =Ve=o

and

EC = (E)q=o

where the subscripts c and e refer to quantities inside and outside the
layer, respectively. Consider now an expression relating u and w on
the surface of the cone which may be obtained from equation (la); namely,

au—=wsin8c
*

or

J
P

u = (Vc)q=o + sin 8~ w @ (16)

o

Since the thiclmess of the vertical layer is proportional to @, the
normal component of the velocity is zero throu@ the layer and the above
expression holds on either side of the vertical layer. An expression for
the velocity and, hence, the Mach number externally adjacent to the vorti.-
cal layer may then be easily determined as follows. The expression for
the crossflow at the vertical layer may be written in the form (from
eq. (15))

V. sin ws=—
(V3Q=0 (Vc)p=o E

— sin rp(l- ~ cot w~cos (p) (17)
sin 5C

Substituting this

%=

(%)q=o

expression in

Vo

1 + (Vc)q=o
E

equation (16) yields, upon integration,

(
sinf.o l-cosq- ~ cot ussin~

)
(18)

a

—
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The Mach number.
determined from

v
\

at the external
the relation

n

side of the vertical layer, ~, may be

(19)

where, of course,

[1
2

Ve Ue2 + We2
—=
(Vc)q=o (Vc):=o

The velocity and the Mach number in the q = O plane are given by (see
Appendix A)

s

and

‘5@*

ug-8*

v-
respectively, where



. .

[
(7+l)~4s# (CIJ.)wo

(MS);==
+ ‘1 - 4{~2s’+”J-+al-‘}{~’sh’b’-+ul+‘}

{-2S’R2[(MJ’P=.+‘1-‘7 - ‘H’ -‘)~’sin2[@+’=o‘“]+2}
If one employs the conditfon that *be pressure is constant across the vertical layer, an

expression defining the Mach number directly on the surface of the body, MC, in terms of the Mach
number at the vorticd layer, may be obtained; namely,

tiere (since EC == (E)p.)

Ee-Zc

m

(

[ 1{M.=sin= (LI)S)Q= +U

[

)

1}(7 - l)M.2sln2 u, + CL(COS Cp + q cot 10&3in2Q) + 2

e .

[
~2sin’ us + U( cos cp + q cot ussin%)1{ [ 1}(7 - l)Mo%in2 (IL)E)Q= + a +2

[

I
27M.2sin2[u~ + a(co6 Q + ~ cot id8sin%)1 - (7 - 1)

[ 1*~2sin2 (IJ8)O= + a - (7 - 1)

t

(20)

(20

Since the flow is isenimopic in the p = O plane (downstream of the shock wave) and smmnd the

surface of the body inside the vortfcal layer, the pressure coefficient anywhere on the surface

may, of course, be obtained by the exptission
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where

(P.)q=

P. =
[ 12yl&2sin2 (w~)q= + a - (7 - U

y+l

ud M2 is givenby equation (20).

13

(22)

M=’]

Flow conditions in the plane ofFlow conditions off the surface.-
symmetry, on the surface of the coney and at the confca~ she* having
been determined, the flow throughout the remainder of the flow field may
now be calculated. Since only high Mach number flows are considered in
this analysis, the variation of the magnitude of the resultant velocity
in a meridian plane will be small.

. be small and may be represented by
coefficients are determined by the

u= Ue

u = us

Hence, the variation of u end v will
a power series
requirements

at u= 8C

at u = Ws

in((d- 5C) where the

at Ld= Eic

and
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and

8.)(-)+ V.(-Y (24)

where w~, US, VS, ad ue sre given by equations,(7)Y (8)~ (10)~ ~d
(18), respectively. There remains now the determination of (&@u) e and
(&/bW) e. To this end, consider equation (lb). Just outside the vortd.cal
layer this equation reduces to

(25)

It will be recalled that the entropy was assumed constsnt between the
shock and the vortfcsl layer in each meridian plsne. Now Eulerls equa-

tion for compressible flow along a stresm tube may be written
(q = constsnt)

~*=-vav
Pa s

Combination of this expression with equation.(25) yfelti

()~‘awe=
from which may be obtained (noting

- We2COt ~c

that at the surface V2 =U2 +#)

(ae=(%)e[@)e + ‘eCot“]
where we is given by equation (17) and

(*)

(27)
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s Now from equation (5) there results (setting v = 0)

(%)e[=++CSC5
<%N=I?Y -‘1 -%

where & is known from equation (19) and from equation (15)

(v~e=v& ::J (Cosq) - q cot LJscos2cp)

(28)

(29)

The components of the local velocity snywhere in the flow field external
to the vertical layer sxe now known from equations (15), (23), ad (24).
Hericejthe magnitude and direction of the resultant velocity and, con-
sequently, the Mach number msy easily be determined. If the Mach number
is-known~-the locsl pressure
where in-the

*
where

flow field with

P=

(in coefficient form) may be obtained any-
the aid of the expression

(30)

2yW2sin2[us +a(cos q + q cot ussin2cp)]- (7 - 1)
(31)

7+1

snd, of course?

()1+
Y

P +%2 +1
—=
Ps ~+Y-lM2

2

(32)

The
the
ing

*

Mach number and pressure distribution (as well as the orientation of
conical shock) sre now known throughout the flow field around a lift-
circulsr cone.

The range of applicability of the results of this analysis is con-

$
sidered to be the same as that of the nonlifting cone solutions presented
in reference 1. This results from the fact that when a =0, equation (A7)
in Appendix A reduces identically to the equation defining the deflection
angle in reference 1. As was pointed out in this reference, when



16 NACA TN 3349

M~(tis- 8 ) >1/2 an imaginary value of 5S is obtained. If a >0,
equation ?AT)yields areal valueof Bs, (for Ms(us-5.) >1/2),lmw- “
ever, it would not be expected that the range of applicability of this
equation (in terms of ~ and 5C) would be increased for finite a. p
Figure 2 shows the boundary line (given by MS(U6 - 5C) = 1/2 for a = O
above which the present conical.flow solutions are applicable. The dashed
line represents the boundary below which the results of Stonets second-
order solution (ref. 5) sre available.

The flow around circular cones traveling at small angles of attack
and at high supersonic airspeeds can be calculated by means of the fore-
going algebraic expressions. As was pointed out previously, these expres-
sions can be employed.to determine fluid properties at the vertices of
pointed bodies of revolution other than cones. Investigation of flow
downstream of the vertices of such bodies is now undertaken.

Flow Downstream of the Vertex

In this study we exploit the finding of reference 3 that many three-
dimensions.1hypersonic flows may be treated by a generalized shock-
expansion method which is analogous to that employed in reference 4 for
two-dimensiond. flows. Specifically, this treatment is permissible when
disturbances associated with the divergence of streamlines in planes
tangent to a surface can be considered negligible compsred to those
associated with the curvature of streamlines in planes normal to the sur-
face. For the case of noninclined bodies of revolution which sre curved

.

in the stream direction, this requirement is satisfied when the hyper-
sonic similarity parameter is greater than about 1 (see ref. 1). For f
fncl~ned bodies, an additional restriction is imposed. This point is per-
haps best clarified by considering the probl~m of calculating flow at the
surface.

It follows from reference 3 that when the generalized shock-expansion
method applies in the region downstream of the vertex, surface streamlines
can be approximated by geodesic lines. The only geodesics on the surface
of a body of revolution which, like streamlines, do not intersect each
other are the meridian lines. In addition, the meridian lines are the
only geodesics which, like the streamlines, pass through the vertex. When
the shock-expansionmethod is applied, then, surface streamlines are
approximated by meridian lines. Strictly speaking, however, this can be
the case only when a < <1. (lt shouldbe noted that this is always t
true, independent of a, for the extreme windward and leeward streamlines.)
Evidently, then, the generalized shock-exptisio.nmethod should be appli-
cshle to curved bodies of revolution only at small angles of attack in

w

flows characterizedby a value of the hypersonic similarity parameter
greater than about 1. \ f“
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The procedure

17

for determining flow conditions at the surface of a
lifting bodv is entirely s.nalogo~ to that employed in the application
of the-shock-expansionmethod ~o the nonlifting body (ref. 1). For

\ exsmple, the kkch number on the surface at the vertex iS obtained ~th
the aid of equation (20). The v=iation of Mach number downstream of
the vertex is then obtained by means of the isentropic expansion relation
(see ref. 1)

@=l/” - ‘W-=] (33,

where A and B sre different points on the sane meridian line (or stream-
line). If the Mach number distribution is WOwn~ the press~e distribu-
tion (in coefficient form) on the surface is readily obtained tith the
aid of equation (22). It shomdbe noticed that when M= is employed,
equation (33) yields the Mach number distribution on the body uuder the

s This result materially reduces the net labor associatedvertical layer.
with carrying out the calculations to determine the pressure distributions
around the body downstream of the vertex since the pressure rise across
the shock need be considered only in the plsne q = O (~Cseeq. (22)). It

“w

la
results, too, that a relatively simple expression for ~ -S the initial

1 slope of the normal-force-coefficient curve) Cm be obtained. The devel-
opment of this expression follows.

The expression for the normal-force coefficient on a body of revolu-
tion may be written

(34)

where d is the dismeter of the base and r is the local radius of the
body. Differentiating expression (34) with respect to a and employing
the condition of constant entropy on the surface results in

*

? %t is reasoned that since avortical layer exists around the body
surface at the vertex, then a vertical layer must exist downstream of
the vertex as well.
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This expression may be rewritten in terms of the initial normal-force-
curve slope for a cone tangent to the body at the vertex; namely,

where the subscript TCN refers to a cone tangent at the vertex. The ..

calculations necessary to determine the initial normal-force-curve slope
dCN

for a body of revolution sxe relatively simple, since ~ ~CN may easily

be obtained from Stone;s first-order theory (ref. 6) or from chat 8 in
reference 8. The Mach number and pressure distribution along the body
may be obtained by the conical shock-expansionmethod presented in refer-
ence 1.4 Having determined these distributions, one may easily evaluate
the integral term in equation (36) by numerical integration or by graphical
methods.

In order to determine fluid properties in the flow field other than
on the surface, it is necessary to know flow conditions just outsi&e the
vertical layer downstream of the vertex. These conditions may be deter-
mined in the same manner as before except that now initial flow condj.-
tions externally adjacent to the vertical layer at the-vertex are
employed. For example, the Mach number at the vertex is determined by
means of equation (19). Equation (33) is then employed, as before, to
obtain the Mach number distribution downstream of the vertex. When flow
conditions along this layer in a meridian plane have been established,
fluid~roperties throu@out the plane may be calculated after the manner
described in reference k. Application of the generalized-shock-expansion
method for determing the flow field in any meridian plane is discussed
in Appendix B.

Simplified Expressions for Slender Lifting Bodies

In the case of slender bodies traveling at very high Mach numbers
(again a <<1) the calculations of fluid properties at the surface
become relatively simple and, hence, merit special attention. As in the
case of the nonlifting body, a hypersonic slender-body theory yielding

41t is clear that the shock-expansionmethod discussed previously in
the present paper may also be used since the expressions developed he~ein
reduce identically to those of reference 1 when a = O.
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.. explicit solutions for the Mach number and pressure at any point on the
surface of the body can be obtained. These solutions may be summarized
(from Appendix C) as follows. The local Mach number at any point is given

* by the relation

Mn
M=

()

-1 (MN@ 1-$
1-+

(37)

where

Ec - Ee

e 7CV =

Y

[
J (MNE)j= ~

2 ?9’sti”l}
2ql-cos q)+ fjN

)1’
1

ql=o

1
2

(7 + l)%’[(%)mq + u

{[ 1’-“ -J{(’:‘)+”’%-‘d’+2}2YM02 (w6)q= + a

\

[ 1’ 1
+‘7%2(W:)q= + ~ -(7-1)

27~2(w~ + u cos q)2 - (7 - 1)

( { [ 2

)

1}
M#(u~ +acosq))2 (7 - l)%’ (Us)q=+a + 2

2

1[
MF[(dq= + ~ (~ - l)~2(f.d5+ a cos q)2 + 2

1

Unless otherwise designated, us in the above expressions is given by

6)s=((0s) (p= + q(l - Cos Cp)

I
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ad (%)q-4 is determined from equation (C7) in Appendix C. Now

where

‘=+
“ and, of course,

e=cL - 11

The pressure coefficient at any
the expression

P=+
yMo

[
()Ps~ (p=c

point onthe surface may be obtained from

It is interesting to note that equations (37) snd (38) predict the ratios
of 10cQ to free-stresm Mach numbers, and local to free-stresm static
pressures to be the same at corresponding points on related ’bodies,pro-
vided that the flow fields”about these bodies are related by the ssme
respective values of the hypersonic similarity parameters M& and~u.
These predictions are identical to those of reference 9 for inviscid
flow about slender three-dimensional shapes. Hence, these expressions
readily lend themselves to solutions in terms of M08N and mu in tab-
ular form. Calculations over a range of M@N from 0.6 to 3.0 end a/8N
from O to 1 were carqied out for flow at the vertex of a body of revolu-
tion and the results of these calculations for the flow parameters
(Ms)q=o (ps/po)q~

MN ‘ (Mo~N)2 ‘
snd (MS8N)Qa are tabulated in table I for 30°

increments of CP fromo” to 1800. Thus, for a given Mo~N and ~a, the
Mach number on the surface of a body downstream of the vertex is readily
obtained with the aid of these tabulated parameters when used in conjunc-
tion with equation (37). me pressure coefficient anywhere on the surface
of the body is easily calculated by means of equation (38).

51n the case where a = O, the expressions developed in the present
yaper reduce identically to thosd presented in reference 1.

.

t.

2
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* The results from table I may also be used to good advantage in deter-
mining the initial normal-force-curve slopes for slender bodies of revolu-
tion. For exsmple, from Appendix C there is obtained

t

where

dCN

z ITCN

Hence, the pertinent flow parameters necessary to determine the initial
slope of the normal-force-coefficient curve by means of the above expres-
sions may be obtained from table I for the case of c@N = 0.

.

&

In order to obtain a
theoretical snslysis, the

EDERIMENT

check on the predictions of the preceding
pressures acting on the surfaces of lifting

bodies of revolution corresponding to values of the hypersonic similarity
psnmeter K from 0.60 to 1.68 at Mach numbers from 3.00 to 5.05 were
determined experimentally. The bodies were tested at angles of attack
up to 15°. A brief description of these tests follows.

Test Apparatus

Tests were conducted in the Ames 10- by lb-inch supersonic wind
tunnel. A detailed description of the wtnd tunnel and auxiliary equip
ment may be found in reference 10. The pressures acting on the model sur-
faces were measured tith a mercury U-tube manometer or by mems of McCleod
gages when the pressures were low enough to be recorded on the latter.

% ~essure-distribution models were mounted on a 0° model support and
on 5°, 10°, and 15° bent supports. The test model~ were two tsngent ogives
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having fineness ratios 3 and ~ and two cones having the ssme vertex angles .
as the ogives. The dimensions of these models and location of the pres-
sure orifices sre shown in figure 3.

#“

Tests and Procedure

Presdures on the model surfaces were measured at 0°, 5°, 10°, and
15° angles of attack at test Mach numbers of 3.00, k.25, snd 5.05. The
Reynolds numbers (based on maximum dismeter of the ogives) were 1.09
million at Mach numbers 3.00 and 4.25, and 0.52 million at Mach number
5.05.

The pres$ures around the cone surface (0° to 360°) at meridian sta-

tions 45° apart were recorded simultaneously at each Mach number and
angle of attack. In the case of the two ogival models, the pressures
were recorded at meridian stations 90° apsrt. Each model was then rotated
45° about its longitudinal axis (except at 0° angle of attack) and the
process repeated.

Schlieren photographs of the bow shock waves in three meridian planes
were also obtained.

Accuracy of Test Results

The vsriation.in Mach num”er frmn the nominal value did not exceed
~oc02 in the region of the test section where the models were located.

The precision of the computed pressure coefficients was affected by
inaccuracies in the pressure measurements, as well as uncertainties in the
stresm angle and the free-stresm dynsmic pressure. The resulting errors
in the pressure coefficientswere generslly less than *0.005 throughout
the Mach number range for KU angles of attack. The meridian angles at
which the pressure coefficients are plotted are considered accurate to
within *lo.

COMPARISON OF THEORY WITH EXPERIMENT AND DISCUSSION OF RESULTS

Flow at the Vertex

It will be recsJled that one of the fundsment~ uaumptions in the
.

development of the conical flow theory was that the conical shock remains
circular when the cone is inclined. It is appropriate to exsmine the c
vslidity of this assumption before proceed~ng with a comparison of the
theoretical and experimental surface pressures. To this end, schlieren
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. evidence on the shapes of the conical shocks for the
Mach number 5.05 is presented in figures 4 snd 5 for
0°, 5°, 10°, snd 15°. The data shown in the figures

23

twp test cones at
singlesof attack of
were obtained by

\ me&r~ng the sngle of the shock in the schlieren photographs at various
meridian stations. Theory is co~”aredtith experiment in a cross-sectional
plane at an .srbitrarydistance downstream of the vertex. It is observed
in figure 4 that the conical shock attached to the slender cone remains
nearly circular for angles of attack up to 10°. At a= 15°, the angle
of attack is greater than the cone half-angle and, as might be expected,
the shock is no longer circular. Huwever, in the case of the blunt cone
(fig. 5), the conical shock remains essentially circulsr for all angles
of attack up to and including 15°. It would appesr, then, that at least
for moderate cone angles, so long as the angle of attack is less than the
semivertex angle of the cone, the assumption of a circular conical shock
made in the analysis is justified.

The second basic assumption employed in the development of the conical
flow theory of this paper is that W - 8 <<1. It is appsrent that this
condition is best satisfied for blunt cones and for hi@ Mach numbers.
The accuracy of the theory mi@t be expected, therefore, to improve both
with increasing cone angle and increasing Mach number. The predictions
of theory and the results of the pressure-distribution tests for the two
test cones (5C = 11.42° and~c = 18.92°) are shown in figures 6, 7, snd 8.
The data are plotted in the form of surface pressure coefficient as
a function of the meridian angle cp.G It is observed in these figures
that the predictions of theory, when applicable, are in good agreement
with experiment for the Mach numbers and angles of attack presented. It.
is evident also that at the hi@est angle of attack (a = 15°) the theory
is less reliable on the leeward side of the body. Although this result

s is due in psrt to the limitations of the theory, it is also clear that
the viscous effects of the flow are influencing the pressures to a greater
extent over the leeward portion of the body. It can also be deduced from
these figures that agreement between theory and experiment is better for
the blunter cone, particularly at the higher angles of attack. It is
indicated, therefore, that the predictions of the conical flow theory of
this paper will yield more reliable results when the psrsmeter u 5C <1./
In the lower range of ~ and ~c (fig. 6) where the present conical flow
theory is not applicable (see fig. 2), Stone~s second-order solution
(ref. U) applied in the manner described in reference 12 yields results
With are in good agrcement with experiment.7 It is observed in figure 7

% will be noted in these and subsequent figures that the data sre
often plotted at meridisn stations slightly different from Oo, 45°, 90°,
etc. This resulted from inaccuracies in rotational positioning of the
model.

7~e to the limited range of the results presented in the tables of.
reference 5, comparison can be made only for the slender cone and then only
for Mach numibers3.00 and k.25 without resorting to extrapolation. Although

i the agreement between Stonets results and experiment appears to be better
at a = 10° than at a = 5°, this result must be attributed to the manner
in tiich the flow psraneters presented in reference 5 were interpolated.
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that both methods yield comparable results over thq smgl.e-of-attackrange
at Mach number 4.25. Hence, it appears that the two theories tend to

n.

overlap in regsrds to their usefulness over the range of ~ and 5C.
f“

It should be mentioned here that the treatment of inclined cone flow
as presented by Ferri in references 7 and 13 was applied to the cases
under discussion in the present paper. Ferri~s method did not yield
results as good as either Stonets second-order theory (where applicable)

—

or the conical flow theory of the present paper. In fact, inconsistent
results were obtained when the methcd was applied accordtig to references 7
and 13. This discrepancy may be traced to what appesrs to be an inconsist-
ency between equation (35) in reference 7 and equation (55) in reference 13.

From the preceding comparisons of the experimentally determined sur-
face pressures and shock-wave shapes with the predictions of the conic~
flow solutions of this paper, it is indicated that the latter solutions
may be employed to predict the flow properties about a lifting cone at
hi@ supersonic airspeeds with good accuracy when the s.ngleof attack is
less than the cone half-sngle (i.e., when a/at <1). It is therefore
suggested that these solutions may be psrticul.arlyuseful for determining
conical flow fields about lifting cones over the range of ~ and 5C not
treated in the M.I.T. tables (ref. 5).

Flow Downstream of the Vertex —

It rpuains now to determine the accuracy with which the solutions
.

for flow about lifting”cones in combination with the isentropic expansion
equations predict the flow about bodies of resolution other than cones.
The pressure distributions on the surfaces of two ogives (having fineness

*

ratios 3 and ~) at Mach numbers 3.00, 4.25, -and5.05 ad at angles of
attack of 0°, ~“, 10°, and 15° were calculated using the methods of this
paper. These distributions are presented in figures 9, 10, and 11 for
values of the hypersonic similarity paremeter, K, vsrying from 0.60 to
1.68. Also shown are the results of the pressure-distrib”utiontests for

—

the two ogival models.

Compsring first the predictions of theory with experiment for the
case of zero lift (fig. 9), we observe that the accuracy of the shock-

—

expansion method generally improves with increasing K. This trend is,
of course, the same as was observed in reference 1 for comparisons of the
predictions of the shock-expansionmethod with those of the method of
characteristics. The results of a chs.ractertsticssolution for the
1/d =3 ogive at ~ = 3.00 (from ref. 14) are also shown for comparative

..

purposes. Characteristics solutions are not available for the other cases; -
however, the results of Rossow (which were obtained by correlating the
pressures obtained by characteristicssolutions according to the hypersonic g
similarity law and presented in ref. 15) are shown. As might be expected,
Rossowrs results are generally in good agreement with experiment although
there is a slight underestimation of the pressures near the base of the .-



NACA TN 3349 25

b body at ~ = 5.05. This is attributed to the viscous effects of the flow
which are probably influencing the pressures at this Mach number. In any
event, it is evident that the predictions of Rossow and the shock-expansion

T method are in good agreement at the highest value of K (K = 1.68).

It is of interest now to determine the reliability of the predictions
of the shock-expsnsion method for lifting bodies. As shown in figure 10,
the theory yields good agreement with experiment for the fineness-ratio-~
ogive on the windward side of the body except at ~ = 3.00 (K = 0.60).s
Some disagreement is evident, however, on the leeward side of the body
at all Mach numbers. In the case of the fineness-ratio-3 ogive (fig. 11),
agreement is generslly better over the entire body at each engle of attack,
?#articulsrlyat the himer values of K (K > 1). It will be recsJ_ledfrom
figure 9 that at cc= 0° the longitudinal pressure distributions on both
ogives indicated that the accuracy of the shock-expansion method increased
aa K increased. It is indicated in figures 10 and 11 that, as would be
expected, this trend carries over to the case of lifting bodies.

It appears in figures 10 and 11 that the most important factor
influencing the accuracy of the method is the reliability of the conical
flow theory at the vertex, since the inaccuracies at the vertex appear
to be reflected strongly in the pressures downstream of the vertex. The
question naturally srises, then, how good sre the predictions of the
shock-expansionmethod when experimentally determined initial conditions
at the vertex are employed? To answer this question, the pressure coef-
ficients on the surfaces of the two ogives under discussion were deter-

. mined in the following manner. Initial conditions at the vertex were
determined from the measured static pressures around a cone (corresponding
to the vertex angle of the body) in con$uaction with the measured shock-

<. wave angle (in the plane (p= O) obtained from schlieren photographs of
the conical flow field. The pressure coefficients downstream of the ver-
tex were then calculated as before. The results of these calculations
for Mach numbers 3.00, 4.25, and 5.05 are compared with experiment in
figures 12 and 13 for a = 150. Results for a =15° we presented because
at this angle of attack the applicability of the conical flow solutions
is most marginal. It is observed fra figure 12(a) that the theory yields
results which indicate an underexpansion of the flow on the sides of the
body (q = 45° andq =900). This result is not surprising since, at this
low value of K (K = 0.60), it wouldbe expected that the true streamlines
would deviate considerably from a meridian line. In other words, flow
disturbances in planes tangent to the body at the surface are no longer
small compsred to those in axial planes. Hence, the flow along a true
streamline travels through a greater resultant angle than that represented
by a meridian line. It can be seen from figures 12(b) and 12(c) that as

. the Mach number and, hence, K, is increased, better a~eement is obtained.

‘It should be noted in figure 10(a) that Stonets second-order solution

% is employed at the vertex since the conical flow theory of the present paper
is not applicable for these conditions (i.e., h = 3.00 and 8C = 11.42°;



26 NACA TN 3349

This is attributed to the fact that the streamlines of the flow deviate u“

less from meridian lines as K is increased. me s~e general trend rnaY
be noted in figure 13 for the fineness-ratiQ-3 ogive. However) in this
latter case, over-all a~eement appears to be better- In fact, good v“——
results are obtained for values of K >1 except on the extreme leeward
side of the body where it is probable that viscous effects are influencing

the pressures. There may be some sepqratioriof flow over this portion of
the body although no evidence of this could be determined from the schlie-

—-

ren photographs. In the case of the finenesi3-ratio-5ogive, schlieren
evidence indicated flow sepsratibn on the leeward side of the body for all
Mach”numbers at a . ~~o. It may be deduced from these figures that the
application of the shock-expansionmethod will yield better results when

—

the initial conditions at the vertex are determined from cone tests
rather than from presently available cone the”ory.

There now remains the determination of the accuracy of the predic-
tions of the generalized shock-expansionmeth”odfor the flow field (other
than the surface) about a lifting body of revolution. To this end, flow
in the plane of symmetry (q = 0° and q = 1800) was calculated (after the
msnner discussed in Appendix B) for each ogive traveling at a Mach number
~.0~ and at an angle of attack of 100.) Flow in a side meridian plane

(Q = 9°) was ~SO c~c~ated for the fineness-ratio-3 ogive. me res~t-
ing shock-wave shapes sre compared with the actual shapes (obtained from
schlieren photographs) in figure 14. The theoretically determined conical
shocks are also shown for contrast. In the case of the fineness-ratio-3
ogive (K = 1.68 and @N = 0.53), theory and experiment are observed to
be in excellent agreement in the plane of symmetry. The ssme observations <
may be made for the side meridian plane. In this latter connection, it
is of interest to point out that essentially the same result would have
been obtained if the shock were assumed circular in cross-sectionalplanes w

and its location determined from the calculations in the plane of symmetry.
In view of the agreement between theory and experiment, it is indicated
that when K is greater than 1 and a/5N is about 1/2 or less, the shock
is essentially circular in cross-sectional view of the flow field about
a pointed body of revolution. In the case of the fineness-ratio-5 ogive,
the poor agreement on the leeward side of the body might be expected since
not only is K marginal for the application of the theory but, more
importtit, @N is relatively large (a/5N= 0.88). It shouldbe pointed
out that if experimentally determined initial conditions are employed,
good agreement with experiment downstream of the vertex is obtained.

Although the predictions of the generalized shock-expansionmethod
have been checked only at the inner and outer boundaries of the flow
field, it is expected that equally good results would be obtained at
intermediate points in the flow field. This conclusion is based on the
fact that the bow shock waves were obtained as a result of the ca2.cula-
tions of these intermediate points.

.

b
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● Hypersonic Slender-Body Theory

The redactions of the hypersonic slender-body theory for a = 0°
sndu=~ g are compared with experiment in figures 15 and 16. It appears
from a comparison of figures 9 md 15 that the slender-body theory will
yield more accurate drag coefficients than the more general theory at
a= Oo, particularly at the lower values of K. This result, altho@h
doubtlessly fortuitous, is the same as that feud h reference 1. In the
case of lifting bodies, it appesrs that the slender-body theory yields
results which are somewhat less satisfactory at all values of K. However,
the theory displays sufficient accuracy for many engineering purposes
even at K = 1. This is particularly evident for the more slender of the
two bodies as indicated in figure 16(b). In view of its simplicity, the
slender-body method should prove useful and its application is further
facilitated by the presentation in this paper of tabulated values of the
pertinent flow parameters for selected values of M08N and c@N (see
table I).

Normal-Force Coefficients

It is appropriate now to consider briefly the forces experienced by
the ogives. To this end, norma3-force coefficients were obtained by
Integrating the theoretical pressure distributions far the two ogives at
a Mach number of 5.05. The results of these calculations are compared

. with those obtained from integrated experimental pressure distributions
in figure 17 for values of K of 1.01 and 1.68. It is obsened that
theory yields vslues of ~ which are,

m
in general, hi@er than those

obtained by experiment. However, agreement improves with increasing K.
Equation (36), as well as the hypersonic slender-body solution (eq. (39)),
appesrs to yield satisfactory initial normsl-force-curve slopes at values
of K as low as 1. Axial.forces have also been obtained for these ogives
and the shock-expansion method is fcmnd to apply with essentially the same
accuracy.

CONCISJDINGREMARKS

The flow about a lifting body of revolution at hi@ supersonic air-
speeds was investigated analytically. With the assumptions of conical
flow at the vertex, hia supersonic Mach numbers, and low angles of attack,
simple approx~te solutions were obtained which yield the Mach number

. and pressure distributions on the surface of the body. Surface stream-
lines were approximated by meridian lines and the flow field in meridian
plmes was calculatedly means of the generalized shock-expansion method.

* In the special case of slender bodies, s3mple explicit ~ressions were
obtained for the Mach number and pressure distributions on the surface.



28 NACATN 3349

Surface pressures and shock-wave shapes were obtained experimentally
at Mach numbers from 3,00 to 5.05 for two ogives having fineness ratios 3

?

snd ~ and for two cones having the same vertex angles as the ogives. The
predictions of the methods of this paper for the surface pressures were w
found to be in good agreement with experiment at values of K about 1,
or greater, when CL/8N(the ratio of ~gle of attack to SemiVerteX ~g~e)
was less than about 1/2. For increasing values of this psrsmeter, agree-
ment deteriorates but may still be considered fair for values of a/8N
up to about 1. The generalized shock-expansionmethod yielded very good
agreement with experiment for the ehape of the bow shock at K = 1.68 and
a/aN = 0.53. It was further indicated that the bow shock remains essen-
tially circular in cross section for angles of attack up to approximately
one half the semivertex angle when K is greater than 1.

Ames Aeronautical.Laboratory
National Advisory Ccmmittee for Aeronautics

Moffett Field, Calif., Jan. 13, 19-55

.
.
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DETERMINATION

APPENDIX A

OF ITQW CONDITIONS AT THE VERTEX IN TEE PLANE OF SYMMETRY

Due to the symmetry of the flow in the plane of symmetry,

au o *=0 ~.o—=
* *

Now from the flow geometry

u = v Cos(u - /3)

v = -V sin(u - 5)

and fro?nequation (la)

v=
2

The fluw is therefore irrotational and the following relation holds

● dV—=-
V

tan(u -8 )d~ (Al)

Substituting the above expressions in

Z& [($7 - .][cot(u - a)(l +*) -

equation (5) results in

ael
cotu+tal(u-a)~+

du

Csc(u - 5)
Vsinw

Equation (A2) is not smenable to algebraic
differs only in the term containing &r/h

solution. However, since it
from the equivalent equation

defining the axisymmetric flow field, a’solution analo~ous to tha~ employed
in reference 1 is suggested. Consistentj then, with the restrictions

. imposed on the flow field in this analysis, namely, (w - 5) <<1 radian,
equation (A2) reduces to

i
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1

where M
ref. l).

-(co-8)cc)t+@-Iif 2(+2] + 1 ~w=o
Vsinb.)a(p

(A3)

snd, hence, the magnitude of V are considered constsnt (see
Now-from e~uation (la)

where h/aP is positive at (p.0 and negative at (p=E.
the surface of the cone, equation (A3) reduces to the linear

38
—=-(1+(3)
aw

or

where (since ~ <<l)

Combining this

38 (~-
Y=—

relation with

5~)(2 + a)cot

* v~ sin ws

= Yc sin%c

(A4)

Hence, near
equation

equations (A3) and (A5) results in

w- 1 .- a sin28c
—-

dw 1- %(w - 5C)2(2+ cr)2 sfn2u[l - M2(w - 8C)2(2 + 0)2]

(A5)

(A6)

which can be integrated to yield (substituting in the boundary conditions)



1 . *.

( {[
s

u Sh%c(cot w - cot 5J 1 - $ sill%c CSC2 8C -
1

1[

1

1})
+ CSC* 8C + — + ~

M(2+ u) M(2 + u)
2
w
u

(2 + u)tam 8esec25c
J3

In[l + (w - $3C)cot 8C] +

(!2+ U)%%cul%c -1

[

1

1{
sin* tic - —

}
tzm8c+M[l+ a+ (2+ u)Mtm8c] - u Si1128&[l - (2 + a)Mta8c]

M(2+ u)

12sin25c - 1
1

(2 + u)ti[l - (2 + u)M tam 5.]
M(2 + u)

hl[l+ (2+ u)M(w -8C)] +

1Eln2 8C + 1

Htan5c+M[(2+ U)hital18C -

M(2 + u)
(1 + u)]} + w Sin%c[l + (2 + cr)M -km 8C]

. .

lLI[l - (2 + o)M(w -

If M in ecmation (AT)

1 12 min2 8C + ~
M(2+ u)

(2 + u)~[l + (2 + cr)Mtan 5C]

8C)] (A7)

is taken aa the Mach nwnber lust downstream of the shock. then flow
conditionsat th~ shock (i:e., &, WS, and 8~) can be obt~ined
tlons (G)j (7), (M’), ti the oblique shock-waverelations

by the sh.iltaneoua soktion of equa-

V
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(y+ l)%b’sin’((d~ * u) - 4[~2sin2(u~ + a) -1][y~2sin2(us * cd +1]
Ms2=

[2yMo2sin2(u~* m) - (y -1)] [(7 -l)~psin2(us * a) +21

.

a

(A8)

and

[

cot(us * a)[~2sin2(ws * a) - 1]
ss*u= tan-1 ~+1

I

(A9)

2 MO= - [~2sin2(us * a) - 1]

To apply these equations, a value for e is chosen slightly less than
u. Then q is fixed by equation (6) and the relationship between the
shock-wave angles is obtained by setting Q = x in equation (7), namely,

(dQ=fl - (%JCJ)- = a (A1O)

NOW (ws)q=o is determinedly solving equations (A7), (A8), and (A9)
simultaneouslywhere a >0 in equation (A7) and the positive sign is
used in equations (A8) and (A9). men (MS)q=r is determined in the
ssme manner as (us)q=o where now a <O in equation (A7) and the negative .
sign is used in equations (A8) and (A9). If the resulting value of e 8
(calculated from eqs. (6) and (AIO)) differs from that originally chosen,
the procedure is repeated using the calculated value of E, and so forth.
Although the foregoing procedure is somewhat tedious, the number of itera- “

tions can be reduced to two or three in most cases by carefully choosing
e and (us)q=o. In this connection, it has been found useful to choose a
value for (us) _ which is less thsm the corresponding shock-wave angle

Lof the nonlift g body by q, the latter angle being approximately 10 to
15 percent of a at the hi@er Mach numbers (~ > 4) and 15 to 30 percent
of a at the lower Mach numbers (~ < 4). It should be remembered that
K is always approximately 1.4 or greater in this analysis.

It is clear that equation (A7) should give a better representation
of the flow field in the p = O plane thsn in the q = x plane since
(u - 8) is always less on the high pressure side of the body. In fact,
there me cases when the combination of ~, 5C, and a is such that
equation (A7) no longer applies on the leeward side of the body. For
example, if the body is slender such that the angle of attack approaches
the half-cone angle, la] cm be 1 or greater. Since u < 0 tn this half-
plane (cp= fi),?M3/&d>0 for these condition’sand equation (A7) will no
longer represent 5 as a monotonically decreasing function of u. Hence,
it is possible that no simultaneous solution of equations (A7), (A8), and
(A9) till exist in the q = x plane. It is necessary, then, to obtain

.-
.



another expremton relating 6

impoiilng the rest’rlction that

W%h the restriction that

8cotu+

and u in this plme. The development of such a relationship by

8 <<1 radian but u remains exbitrary till nowbe considered-l ~

5 <<1 radian, equation (A2) maybe reduced to the form Q

~ [1 - M2sin2u(l -5 cot U)2] + -$

where M is again considered constant. Near the surface of the cone, the

to
&

au
+8cotu+u=o

which tiasthe Bolution

8=ocotU+kcscId

=0 (All) g

above expression reduces

(A12)

Combining equations (KU.) and (A12) and inte~atlng the resulting expression @elds (to the or&r

of accuracy of this analysis)

u[(4+2u-u?)M%in25c - (sin%c+ u)]
1+

lFsin%3c(4 - u’) -20

L

@(a+ 1) (sl,n~ - sin2u)
1+ 1~ (I+&sin%c)* + @SiJ%

Pi 1+ (l+a&sti%c)2+ &sti25C-atisin%C

~“

‘1
21F(a+l)l

1+

l“JGZFZ%Z
A

O(U+ Ein%c)

‘)*U .M?s&5c(4 - U*)

[2 -Sin%l(l+u CSC%C)]2

(M-3)
u{ {

[2 -(u+ sin28c)t *
y

[1+ (2+ u)tisin%, -(1+ u)Fsin2kI] -tisin%c

Vthe method of development is simllm to that presented h reference 1.
w
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where M is again chosen as the Mach number just downstream of the shock. .
Hence, conditions at the shock can be determined by the iteration pro-
cedure mentioned earlier except that now equation (A13) is used in place
of equation (A7). Although the former equation may be employed to deter- 4
mine the shock angle at ~ = O as well as at q . n for slender bodies,
it is suggested that-equation (A7) be used to determine flow conditions
on the windward side of the body and equ”ation(A13) for flow conditions
on the leeward side of the body only when equation (A7) csmnot be solved
simultaneously with equations (A8) and (A9). If the shock angles in the
plane of symmetry, are known, the variation of 8 with u is known from
equation (A7). For the case where this equation does not apply in the
plane Q = X, this variation is givenby equation (A13).

The determination of the small variations in the local velocity in
the plane of symmetry is identical to that presented in reference 1 for
the case of (u - 8) <<1
may be written

v

radian. Hence, the expression for the velocity

t3c-5s

1 1

WS-5S

Cos(us - 6s)
-=
Vs

[[

(8C - 5)((J)S - 5E)
Cos

?5C- 5s 1/

(A14)

If the velocity is known, the Mach number may, of course, be deter-
mined from the relation

and the pressure coefficient may be obtained with the aid of the expres-
sion

where

Ps _

Po

P=--.&(*;-.)

2y~2sin2(us * a) - (7 - 1)

y+l

and

(u6)

*.- —

--

—
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DETERMINATION

APPENDIX B

OF FLOW IN A MERIDIAN PLANE

Flow about a lifting body of revolution may be calculated in any
meridisn plane by the generalized shock-expansion method in much the same
manner as the procedure employed in reference 4 for flow about airfoils.
However, the application of the method is somewhat more complicated for
the case of a body of revolution since now the influence of the conical
flow in the region of the vertex must be considered.

The determination of axially symmetric flow in the region of the
vertex of a body of revolution (K > 1) was described in reference 16.
Expressions were developed which yield the shock-wave curvature as well
as flow conditions along a line a short distance downstream of the vertex.
An analysis entirely snalogous to that in reference 16 was csrried through
for the lifting body and it was found that more general expressions can be

obtained which take into account the effects of angle of attack. Thus,
it csm be shown that the expression for the ratio of the shock-wave cur-
vature to body curvature nesr the vertex is (consistent with the assump-
tions of the present paper)

Ks 2y~2sin2[ws +a(cos cp+qcot ussin2q)] - (7 -1) ~ tm(u6

~= [
-?5~)cot Plq]a

. w2sin%@rl 2[US +a(cos q+q cot Ussin%p)] -

where (Bl)

The function ~ is defined by the expression

(If=l+
v &sixl -“<97

and is evaluated at the surface outside the vertical layer by means of
the previously developed conical-flow expressions. Shnilarly, expressions
for flow conditions along a line normal to the axis of the body a short
distance downstrem of the vertex maybe obtained. For example, the
variation of flow inclination, 8, along this line is given by

.-

(B2)
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where A and B are points on
the shock, respectively. The
pressure remain unchanged and
present paper)

NACATN 3349

the line corresponding to the surface and
relations for the static pressure and total
may be written (in the notation of the

[[

2~KNcos(13 + 5)
PB-PA+

sin ~ sin @ INB-Y.)](-J2

and

H= HB +
[1

$&scos 8

sin(w - 8) -(y-yB) +
L

(HA -HB- (L)Y- YB 2
A -Y

(B4)

respectively. It should be noticed that expressions (Ill.)and (B2) reduce

~H
xKscOs 51(YA-YB)sin(w - 5)
. B

(B3)

identically to those given in reference 16 for axially s~etric flow.

~owing the flow .conditionsin any meridian plane in the region of
the vertex, it is now a relatively simple matter to construct the entire
flow field downstream of the vertex. To illustrate, consider the sketch”
(flow in a meridian plane cp= constant):

Y

A!!!!!!

● �

✎

.

.
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. With the oblique-shock-wave, conical-flow, and expansion equations, all
fluid properties at points M, A!, A, C, snd so forth, on the body surface
may be calculated in the maaner described previously in the present paper.

b Hence, flow conditions along the line AH may be determined from expres-
sions (Bl) throu~ (B4). It will be recalled that the basic condition
employed in constructing flow fields about airfoils by the generalized
shock-expansion method is that the pressure is constant along Mach lines
emsnating from the surface. In the case of flow about bodies of revolu-
tion, this condition must be relaxed to account for the variation in pres-
sure due to the influence of the conical flow in the region of the vertex.
This may be accomplished in the following manner. The Mach line AtB is
constructed from the lnmwn conditions in the region MAB shown in the
sketch. The net pressure change along this Mach line (i.e., pB - pAl)
is thus determined. This pressure difference is then assumed to represent
the net pressue change between the body surface and the shock along each
Mach line emanating from the surface downstream of the vertex. The flow
field is then constructed using this criterion in conjunction with the
isentropic expansion relations for flow along streamlines. Once the
shapes of the streamlines are calculated, the fluid properties along these
lines are, of course, determined in the same manner as those along the
surface.



38 NACA TN 3349

APPENDIX C

FLOW AT THE SURFACE OF A SLENDER BODY TRAVELING AT HIGH

SUPERSONIC!AIRSPEEDS AND AT SMALL ANGLES OF ATTACK

If a slender body (i.e., a body on the surface of which the slopes
are everywhere small comp=ed to 1) is traveling at free-stream Mach
numbers very large compared to 1 (agatn, of course, K > 1) and at angles
of attack very small compared to 1, the local Mach numbers will likewise
be large compared to 1. Yt follows, then, that the inclination of the
nose shock wave will be small and, consequently, that u will always be
small. In this case, the relation between 8 and w at the vertex (in
the plane Q = O) ti relatively simple and maybe obtained by integrating
the expression (see eqs. (Ah) and (All))

*6 Ews—=
au ‘~-~

5~2 Ws

()
%8=~-— (Al 1 -~

Combining this expression with equation (Al), the relation

which yields

(cl)

()Ws2 1 = ~ 2)+G8~ I-T
% #3 -s

()w~ e (C2)

defining the velocities in the plane (p= O is easily obtained. Hence,
the surface Mach number in this plane at the vertex, MN, may (to the
order of accuracy of this analysis) be related to MS
equation (A15) with equation -(C2)to yield

by combining

MN2

[

=Ms2 1 +% (Ms8N)
2[’ + ‘“$!7 -kT - ‘G(% - ‘)1] “3)

Now the oblique shock-wave relations for flow of
considerationreduce to (at (p= O)

the type under

.

—
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(7 i-1)~’(u. +a)2
M~2 =

[27M02(ql + u)= - (7 - 1)1[(7 - 1) M02(US + cd= + 21

~=(w + a)= -*h&( LOs+cL)(5~+cL)-l=o

P5 27 -1

z= 7+1~2(W~+a)2-~ 7+1

Combining equations (6), (Cl), and (C!5) results in

MO(W-)

39

(C4)

(C5)

(c6)

and

(C7)

(c8)

There remains now the determination of q, which defines the position
of the conical shock, in order to determine the shock-wave angle in the
plane cp= O. To this end, the assumption of a circular conical shock is
again employed, but now it is deemed sufficiently accurate for the purposes
of this analysis to assume a linem vsxiation of q with a.;namely

.

dq
n =—

Ida -a
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Now from equation (A1O) there results *

(C9)

Consider for the moment, flow in the plane g = sf. The =gl-e of attack
a and, therefore, e are both negative in this plane. Hence, equa-
tion (C5) maybe written

2 7+1
Mo2(ua - u) -—

2
Mo2(t.0s- u)(t5s- a) - 1 = O

and the conical-flow expression (see eq. (Cl)) becomes (at u = MS)

Differentiating these expressions with respect to a and combining the
resulting expressions yields in the limit as u + O

(Clo)

Preceding in the smne msnner for flow in the plane 9 = O (see eqs. (Cl)
snd (C5)) there is obtained

as(~+ 1).+ [D: (us -,., + (Us+ 5s)]=0

Combining equations (6), (C9), (C1O), and (Cll) restits in

(Cll)

.

.

At a= O (see ref. 1)
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smd

Hence,

where @N iS
equations (C12).
given values of
Hence, the shock

a function of M@w only and,

(C12)

a (C13)

of course, is given by- a-

The shockwave angle at (p= O CEOInowhe determined for
M@N and M@ by means of equations (C7) and (C13).
angle around the entire conical shock front may easily

be determined with the aid of the expression
.

.
( C14)

Surface conditions around the body at the vertex may now be deter-
mined after the manner described in the more general analysis of flow
about cones. For -example,consistent with the assumptions basic to the
present analysis, equations (17) and (18) reduce to

(C15)

and

.

respectively.
at the vertex

(VN;-=1 + ad~(l - Cosq)) (c16)

Hence, the surface velocity external to the vertical layer
may be written
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2

[1

v~
2

(VN)q~ ()
= 1 + 2eu~(l - Cos (p)+ - Sill%p

8N

and the correspondingMach number,

.

(C17)

~, maybe related to (MN)P~ by
combining equation (19) with this-expression to yield

Consistent with the assumptions basic to the present analysis, the Mach
number directly on the surface at the vertex (i.e., inside the vorticsJ.
layer) maybe obtained from the relation (see eq. (20))

where
(C19)

[

1

2y~2(f.06+ a)& - (7-0 II7 %2(ws+ucosQ)2[(7-l)~ti2(~s +U);=O+2= 1

2yMo2(us+a co’ (p)2- (y- 1) M&(ws+a)2 ~=o~~ - l)Mo2(%+acos q)2+ ~ 1

(C20)
Equations (C3), (c18), and (C19) may now be combined to yield

{
(m):=o1++ [ W-GY-%(S’)I)V=O(Ms8N)2 1+ in

‘N2 ‘(%$) j-% @%=o[2% @cos~)+(+ysi”29]}

at
of

(C21)
The expressions just derived provide the Mach number on the surface

the vertex. If MN is known, the Mach number anywhere on the surface
the body may be-obtained by means of the expression (see ref. 1)

M=. . %“

(J
~-*(~N)l-:

( C22)

—

.-

—

—
!

,-

.

.

.-

.

.

.—
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Now the pressure coefficient is givenby the expression

43

P
[)

Ps P

‘* Zqa (Ps)q+ 1-1 (c23)

The pressure rise across the shock is givenby equation (c6) and the ratio
of the pressure anywhere on the surface to the pressure at the shock at

~= O can be expressed (to the order of accuracy of this analysis) in
the form

This expression may
can be written

be combined witi equation (C!22),and equation (C23)

P
2

‘m
.

. yielding the pressure coefficient at any point on the surface of the body.

The initial normal-force-curve slope for slender bodies of revolution
may easily be determined in the following manner. To the order of accuracy
of this analysis, equation (36) may be reduced to the form

(c25)

Consistent with the assumptions basic to the present analysis, the fol-
lowing relations may be obtained; nsmely,

~N M—=—
P MN
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and
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mese expressions may

There remains now the

with equation (C22) and (C25) to yield.
be combined

1

J[
1-

TCN
0

determination of the initial normal-force-curve
slope for a cone tangent to the body at the vertex. This slope may be
expressed as

Nok the ratio of the static pressure anywhere on the surface of a lifting
cone (a < < 1) to the free-stream static pressure may be expressed in the
form \

E=C%Y%.) (C28)

where Ve is the local velocity externally adjacent to the vertical layer
and

(c29)

Differentiating equation (c28) with respect to a and retaining onlY
terms which are f&ctions”of q , we obt-tinin the limit as a ~ O -

.

.

.

(C30)
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From equations (6) and (C13) there maybe obtained

Combining this expression with equation (C30) and noting that (see ref. 1)

2Y

r)

N
~

~ r)
= [1+ 7(14J5N)21 g

a=o

equation (C!27)may finally be written

-
da TCN= .

where MN, Ms, and as
a = O in the pertinent
paper.

(MO%)
[

27’+S8N

][
—–-1 1++
y+l 5s

(M&Jj
(C31)

may be determined from reference 1 or by setting
expressions previously derived in the present
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